The Romanian agrometeorological services and products – current status and challenges in the context of climate change

Elena MATEESCU
National Meteorological Administration of Romania

WORKSHOP
Agrometeorologists for farmers in hotter, drier, wetter future
9-10 November 2016
Ljubljana, SLOVENIA
Climate change is likely to shift the patterns of droughts and possibly increase the frequency and severity of extreme drought conditions in Romania.
REASON FOR CONCERNS???

CLIMATIC CONDITION IN ROMANIA IN THE CONTEXT OF CC

• In Romania, the mean annual air temperature rose by 0.6°C in the last 100 years. The evolution by decades of the mean multiannual air temperature over the 1901-2015 period show that the increasing trend is obvious especially beginning with 1991, 2015 being the warmest year of the records.

• As regards precipitation, the 1901-2015 period highlighted a general decreasing trend in the annual precipitation amounts especially in the last 30 years and a parallel enhance of the precipitation deficit in the South, South-East and East of the country.

• Since 1901 until now, Romania has seen in every decade one to four extremely droughty/rainy years, an increasing number of droughts being more and more apparent especially after 1991.
SUMMER
- **1961-1990**: 18.5°C
- **1981-2010**: 19.5°C, +1°C

1. **2012**: 21.8°C, +2.4°C
2. **2007**: 21.8°C +2.1°C
3. **2003 si 2015**: 20.8°C, +1.3°C

ROMANIA
The warmest 16 years:
The warmest years in Romania

The warmest years / 1901-2015

<table>
<thead>
<tr>
<th>Year</th>
<th>Annual air temperature</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2015</td>
<td>11.6°C</td>
<td>1.9600°C</td>
</tr>
<tr>
<td>2. 2007</td>
<td>11.5°C</td>
<td>1.8743°C</td>
</tr>
<tr>
<td>3. 2014</td>
<td>11.5°C</td>
<td>1.8644°C</td>
</tr>
<tr>
<td>4. 1994</td>
<td>11.1°C</td>
<td>1.5415°C</td>
</tr>
<tr>
<td>5. 2012</td>
<td>11.1°C</td>
<td>1.5413°C</td>
</tr>
<tr>
<td>6. 2013</td>
<td>11.1°C</td>
<td>1.5243°C</td>
</tr>
<tr>
<td>7. 2009</td>
<td>11.1°C</td>
<td>1.4874°C</td>
</tr>
<tr>
<td>8. 2008</td>
<td>11.1°C</td>
<td>1.4671°C</td>
</tr>
<tr>
<td>9. 2000</td>
<td>11.0°C</td>
<td>1.3920°C</td>
</tr>
<tr>
<td>10. 2002</td>
<td>11.0°C</td>
<td>1.3528°C</td>
</tr>
</tbody>
</table>

44.3°C / 24.07.2007 in Calafat – absolute maximum monthly air temperature
Air temperature trend in Romania / 1961-2015

Air temperature / Summer

Heat wave

Summer days ($T_{max}>25^\circ$C)

Increase
Heat wave trend in Romania
(2 days consecutive with Tmax ≥37°C)
Intensity of scorching heat in the summer season

Units of scorching heat ($\Sigma T_{\text{max}} \geq 32^\circ\text{C}, \text{VI-VIII}$)

<table>
<thead>
<tr>
<th>Period</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961-1990</td>
<td>13</td>
</tr>
<tr>
<td>1971-2000</td>
<td>18</td>
</tr>
<tr>
<td>1981-2010</td>
<td>28</td>
</tr>
</tbody>
</table>
Annual rainfall / agricultural region – decreasing tendency

<table>
<thead>
<tr>
<th></th>
<th>1961-1990</th>
<th>1981-2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dobrogea</td>
<td>417.0 mm</td>
<td>412.0 mm</td>
</tr>
<tr>
<td>Moldova</td>
<td>576.7 mm</td>
<td>575.9 mm</td>
</tr>
<tr>
<td>Muntenia</td>
<td>598.2 mm</td>
<td>575.7 mm</td>
</tr>
<tr>
<td>Oltenia</td>
<td>673.4 mm</td>
<td>645.8 mm</td>
</tr>
<tr>
<td>Crisana</td>
<td>669.3 mm</td>
<td>668.4 mm</td>
</tr>
<tr>
<td>Transilvania</td>
<td>681.5 mm</td>
<td>680.0 mm</td>
</tr>
<tr>
<td>Banat</td>
<td>753.2 mm</td>
<td>737.8 mm</td>
</tr>
<tr>
<td>Maramures</td>
<td>799.2 mm</td>
<td>829.1 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DECADE</th>
<th>XX-TH CENTURY</th>
<th>XXI-ST CENTURY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1901-1910</td>
<td>1907-1908, 1910</td>
<td></td>
</tr>
<tr>
<td>1911-1920</td>
<td>1917-1918, 1911</td>
<td>1911, 1912, 1915, 1919</td>
</tr>
<tr>
<td>1921-1930</td>
<td>1923-1924, 1927-1928</td>
<td>1929</td>
</tr>
<tr>
<td>1931-1940</td>
<td>1934-1935, 1937</td>
<td>1939, 1940</td>
</tr>
</tbody>
</table>

Since 1901 until now, Romania has seen in every decade one to four extremely droughty/rainy years, an increasing number of droughts being more and more apparent after 1981
Mean air temperature / January – September 2016

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>-0.9</td>
<td>5.7</td>
<td>1.7</td>
<td>2.7</td>
<td>-1.2</td>
<td>1.4</td>
<td>0.8</td>
<td>0.2</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>1.6</td>
<td>1.1</td>
<td>0.9</td>
<td>-0.5</td>
<td>0.6</td>
<td>0.3</td>
<td>2.0</td>
<td>1.9</td>
<td>2.6</td>
<td>-0.5</td>
<td>2.4</td>
<td>2.9</td>
</tr>
<tr>
<td>2007</td>
<td>5.2</td>
<td>3.2</td>
<td>2.7</td>
<td>0.7</td>
<td>2.0</td>
<td>2.4</td>
<td>2.8</td>
<td>1.3</td>
<td>-0.9</td>
<td>0.1</td>
<td>-1.4</td>
<td>-0.7</td>
</tr>
<tr>
<td>2014</td>
<td>2.3</td>
<td>2.9</td>
<td>3.5</td>
<td>0.6</td>
<td>-0.7</td>
<td>-0.8</td>
<td>0.0</td>
<td>0.3</td>
<td>0.7</td>
<td>0.5</td>
<td>1.1</td>
<td>1.6</td>
</tr>
<tr>
<td>1994</td>
<td>3.5</td>
<td>1.3</td>
<td>2.3</td>
<td>1.2</td>
<td>0.2</td>
<td>-0.2</td>
<td>0.9</td>
<td>0.7</td>
<td>4.2</td>
<td>-0.3</td>
<td>-0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>2012</td>
<td>-0.4</td>
<td>-5.7</td>
<td>0.2</td>
<td>1.8</td>
<td>0.6</td>
<td>2.2</td>
<td>3.5</td>
<td>1.7</td>
<td>2.7</td>
<td>1.9</td>
<td>2.2</td>
<td>-1.3</td>
</tr>
</tbody>
</table>

Mean air temperature / the first 9 months of the 2016 year / deviation of 1981-2010 period

<table>
<thead>
<tr>
<th>Year</th>
<th>Mean Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>2.10°C</td>
</tr>
<tr>
<td>1994</td>
<td>1.51°C</td>
</tr>
<tr>
<td>2016</td>
<td>1.27°C</td>
</tr>
<tr>
<td>2015</td>
<td>1.12°C</td>
</tr>
<tr>
<td>2014</td>
<td>0.92°C</td>
</tr>
<tr>
<td>2012</td>
<td>0.68°C</td>
</tr>
</tbody>
</table>
Average monthly precipitation fallen in the year 2016

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981-2010</td>
<td>33.6</td>
<td>31.6</td>
<td>38.3</td>
<td>51.3</td>
<td>66.5</td>
<td>84.5</td>
<td>77.8</td>
<td>64.7</td>
<td>55.0</td>
<td>43.5</td>
<td>41.5</td>
<td>44.8</td>
</tr>
<tr>
<td>2016</td>
<td>52.0</td>
<td>38.4</td>
<td>53.5</td>
<td>64</td>
<td>95.9</td>
<td>128.3</td>
<td>60.7</td>
<td>68.8</td>
<td>49.4</td>
<td>103.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **June 2016**
- **July 2016**
- **August 2016**
- **September 2016**
- **October 2016**
Data: EuroCORDEX numerical experiments

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Centrul de modelare climatică regională/Regional modeling center</th>
<th>Model regional/Regional model</th>
<th>Model global/Global model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CLMcom (Consorţiu CLMcom)</td>
<td>CCLM4-8-17</td>
<td>MPI-ESM-LR</td>
</tr>
<tr>
<td>3</td>
<td>IPSL-INERIS (Laboratorul de Stiinţa Climei şi Mediului, IPSL, CEA/CNRS/UVSQ – Institutul Naţional al Mediului Industrial şi la Riscurilor, Halatte, Franţa)</td>
<td>WRF331F</td>
<td>IPSL-CM5A-MR</td>
</tr>
<tr>
<td>4</td>
<td>KNMI (Institutul Regal Olandez de Meteorologie)</td>
<td>RACMO22E</td>
<td>ICHEC-EC-EARTH</td>
</tr>
<tr>
<td>6</td>
<td>SMHI (Institutul Hidrometeorologic Suedez)</td>
<td>RCA4</td>
<td>ICHEC-EC-EARTH</td>
</tr>
</tbody>
</table>

Scenarios

Scenarios RCP 2.6, RCP 4.5 and RCP 8.5.
 Spatial resolution of EuroCORDEX models is 0.125 deg. in latitude and longitude.
Mean difference of 4-models ensemble for daily precipitation intensity (mm)
2021-2050 vs. 1971-2000

Mean difference of 4-models ensemble for number of days with T. max greater than 35 deg.C
2021-2050 vs. 1971-2000

Mean difference of 4-models ensemble for daily precipitation amount greater than 20 l/m²
2021-2050 vs. 1971-2000

Mean difference of 4-models ensemble for number of days with T. min greater than 20 deg.C
2021-2050 vs. 1971-2000
Rainfall in the summer season
2021-2050 vs. 1971-2000

Differences in the average amount of summer rainfall (%) in the conditions of the scenario RCP 4.5
2021-2050 vs. 1971-2000
Climate change scenarios in Romania:

- Increasing probability of occurrence for droughty events due to raising temperature and decreasing precipitation especially during the summer season in the Southern, South-Eastern and Eastern regions;

- Increasing probability of occurrence for tropical nights, hot days, summer days;

- Local factors modulate the magnitude of the increasing probability of occurrence for natural hazards (e.g. topography).
- EU Funding Period for 2007-2013 and 2014-2020 periods / Operational Sectoral Programme for Environment (POS-MEDIU)
- NMA project: The development of the national system of monitoring and warning of extreme weather phenomena for the protection of life and property materials (5 million Euro).
- In 2007-2013 programming period will be implemented the activities related of modernization of meteo and agrometeorological networks:

1. Meteorological network (1 million Euro) – 31 weather meteo stations (MWAS) in order to complete the automatic meteorological network and dedicated software for processing data in automatic flow / 31 December 2015

2. Agrometeorological network (200.000 Euro):
 - Modernization of agromet network / 25 soil moisture portable systems / new systems implemented within 1 November 2015
 - Windows Server /CISC x86 6-core
 - National data base platform / type SQL Server 2008
 - Modernization of applications in operational activity – dedicated software for agrometeorological data and indicators (national/regional level) / 31 December 2015

OMU PEAK, 2504 m
For the next 4 years (2016-2020), other objectives are foreseen:

- the acquisition of a new visualization system
- the modernization of the radar network
- the modernization of the weather data communication system
- the improvement of the informatic security of the IT infrastructure of the whole meteorological system
www.metroromania.ro
NMA – Surface Observation Network

Synoptic and climatological network
– 160 automatic stations

Agrometeorological network
– 55 automatic stations

- 7 Regional Meteorological Centres
- 160 weather meteorological stations
- 55 weather stations integrating a special program of agrometeorological measurements – soil moisture and phenological data (winter wheat, maize, sunflower, rape, fruit trees and vineyards.)
Weather forecast

- **NMA has kept its status as a member of the COSMO and ALADIN/LACE consortium.**
- **The non-hydrostatic COSMO model is integrated operationally four times a day (00UTC, 06UTC, 12 UTC and 18UTC), at two horizontal resolutions (7 km and 2.8 km horizontal resolution).** The model is implemented on a Cluster Linux IBM. For the 7 km-resolution, the model is integrated for 78 hours of forecast on a domain which covers Romanian territory. The initial and lateral and boundary conditions for the COSMO model integrated at 2.8 km horizontal resolution are obtained from the integration of the COSMO model at the 7 km resolution. The results are post-processed and used in the operational forecasting activity.
- **The ALADIN model version named “ALARO” (with specific moist parameterization package) run four times a day at 6.5 km resolution over a domain covering Romania and its surroundings.**
Agrometeorological operational activity:

- ANM use the soil water balance model (SWBM) in order to identify periods of water stress which may have adverse effects on crop production. This identification help in adopting appropriate management practices to alleviate the constraint and increase the crop yields.
- The meteorological data (synoptic data and ETP data based on the FAO recommended Penman-Monteith method) are processing in order to obtain the outputs data for soil water model balance (SWBM).
- The agrometeorological data (phenological data and in-situ soil measurements) represent specialized information coming from the network’s weather stations with agrometeorological programme (55 stations), representative for areas of agricultural interest.
- The soil water balance model (SWBM) calculates the soil moisture reserve (mc/ha) and water deficit (mc/ha) in order to assess the available water resources for crops (watering time) – maps at national/regional level.
- Agrometeorological Bulletin (diagnosis/forecasts) – weekly, monthly, seasonal, annual.
- Beneficiaries: Ministry of Environment, Water and Forests, Ministry of Agriculture and Rural Development, farmers, Agricultural Associations, public media, etc.
MODULE / Soil moisture
RSMN: The Romanian Soil Moisture & Temperature Observation Network
55 NEW STATIONS

- By ASSIMO project it will set a Continuous Soil Moisture & Temperature Ground-based Observation Network (RSMN) within the framework of NMA’s weather station network, for achieving it’s overall goal of stimulating the utilization of space-based Earth observations of soil moisture.

- RSMN is made up of a “static” component – the SM&T probes at 20 weather station locations and of a mobile component – 30 autonomous, easy to deploy SM stations.

- While NMA is operating a network of 160 weather stations, soil moisture measured every 10 days at 55 stations for agro-meteorological applications.

- At 247,000 km² – the areal extent of the country, the resulting average spacing of 67² km² (calculated as the ratio of areal extent/number of sites) could be a good starting point provided that the measurements are more frequent and the topography and land cover less diverse.

Assessment of Satellite Derived Soil Moisture Products over Romania (ASSIMO)
Program for Research-Development-Innovation for Space Technology and Advanced Research – STAR
Romanian Space Agency (ROSA)
(http://assimo.meteoromania.ro/)
The conceptual scheme of “SYSTEM SOFTWARE AGROMETEO”

- **Local level / agrometeorological station – metadata**

- **National level – web application**

- **Validation of data at regional level by 7 responsible with agrometeorological activity using a friendly web interface**
National AGROMETEO Application is a web-application based on a module dedicated to agro-meteorological responsible from each Regional Meteorological Centre.

- Consolidate phenological reports
- Data correction
- Data validation
- Save data
CLIMATIC INDICATORS

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Index</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD</td>
<td>Frost Days</td>
<td>R5mm</td>
<td>n° of days with RR ≥ 5mm</td>
</tr>
<tr>
<td>TD</td>
<td>Tropical Days</td>
<td>CDD</td>
<td>Consecutive Dry Days</td>
</tr>
<tr>
<td>CTD</td>
<td>Consecutive Tropical Days</td>
<td>CWD</td>
<td>Consecutive Wet Days</td>
</tr>
<tr>
<td>GSL</td>
<td>Growing Season Length</td>
<td>PRCPTOT</td>
<td>Total precipitation</td>
</tr>
<tr>
<td>GDD</td>
<td>Growing Degree Days</td>
<td>SPI</td>
<td>Standardized Precipitation Index</td>
</tr>
<tr>
<td>WSDI</td>
<td>Warm Spell Duration Index</td>
<td>SPEI</td>
<td>Standardized Precipitation-Evapotranspiration Index</td>
</tr>
<tr>
<td>CSDI</td>
<td>Cold Spell Duration Index</td>
<td>AI</td>
<td>Aridity Index</td>
</tr>
<tr>
<td>PET</td>
<td>Potential EvapoTranspiration</td>
<td>PDSI</td>
<td>Palmer Drought Severity Index</td>
</tr>
</tbody>
</table>

AGROMETEOROLOGICAL INDICATORS

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Index</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>Soil Moisture</td>
<td>CW</td>
<td>Cold Wave (ΣTmin°≤-10°C, December- February)</td>
</tr>
<tr>
<td>HW</td>
<td>Heat Wave (ΣTmax≥32°C, June-August)</td>
<td>DVI</td>
<td>Drought Vulnerability Index</td>
</tr>
</tbody>
</table>
AGROMETEOROLOGICAL OPERATIONAL ACTIVITY / 55 weather stations integrating a special program from 1971-present

– soil moisture and phenological data (winter wheat, maize, sunflower, rape, fruit trees and vineyards).

SOIL MOISTURE and CROP MONITORING IS BASED ON SPECIFIC INDICATORS / agrometeorological operational and research activities
- climatic indicators: SPI, Aridity index, etc
- agrometerological indicators: Soil moisture, heat waves, etc
- satellite-derived products: Normalized Difference Water Index (NDWI), Leaf area Index (LAI); Fraction of Absorbed Photosynthetic Solar Radiation (fAPAR)
<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Index</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDVI</td>
<td>Normalized Differences Vegetation Index</td>
<td>NDDI</td>
<td>Normalized Difference Drought Index</td>
</tr>
<tr>
<td>NDWI</td>
<td>Normalized Difference Water Index</td>
<td>FAPAR</td>
<td>Fraction of Absorbed Photosynthetically Active Radiation</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf Area Index</td>
<td>SMI</td>
<td>Soil Moisture Index</td>
</tr>
</tbody>
</table>

NDVI evolution over Romania for the period 01 March – 10 October 2014 (10 days synthesis)
Vegetation indices: NDWI

The Normalized Difference Water Index (NDWI) is a satellite-derived index from the Near-Infrared (NIR) and Short Wave Infrared (SWIR) reflectance channels:

NDWI index is a good indicator of water content of leaves and is used for detecting and monitoring the humidity of the vegetation cover.

Because it is influenced by plants dehydration and wilting, NDWI may be a better indicator for drought monitoring than NDVI.

By providing near real-time data related to plant water stress, the water management can be improve, particularly by irrigating agricultural areas affected by drought, according to water needs.
Vegetation indices: NDDI

- The Normalized Difference Drought Index (NDDI):
 \[\text{NDDI} = \frac{\text{NDVI} - \text{NDWI}}{\text{NDVI} + \text{NDWI}} \]

- NDDI had a stronger response to summer drought conditions than a simple difference between NDVI and NDWI, and is therefore a more sensitive indicator of drought.

- This index can be an optimal complement to in-situ based indicators or for other indicators based on remote sensing data.

The NDDI obtained from MODIS - MOD09A1 products (8-days composite)
”National Risk Assessment – RO RISK – (SIPOCA code: 30, co-financed under EFS through Operational Programme Administrative Capacity) under coordination of General Inspectorate for Emergency Situations

9 HAZARDS – natural, technological and biological
DROUGHT METEOROLOGICAL HAZARD

4 scenarios at national level:
- Scenario 1: 2011-2012 year, with a return period of 3 events in 10 years
- Scenario 2: 2006-2007 year, with a return period of 3 events in 25 years (4 events in 100 years)
- Scenario 3: Annual Maximum Consecutive Dry Days (CDD), with daily mean rainfall <1 mm (CDD), with a return period of 1 event in 100 years
- Scenario 4. PDSI Index / 2071-2100 vs. 1971-2100, with a return period of 1 event in 100 years

3 scenarios at regional level:
- Scenario 1: Oltenia / SPEI index, with a return period of 1 event in 10 and 100 years
- Scenario 2: Moldova / SPEI index, with a return period of 1 event in 100 years
<table>
<thead>
<tr>
<th>Scenario</th>
<th>The number of stations for which the condition as the rainfall to be less than 350 mm/year</th>
<th>Probability</th>
<th>Return period</th>
<th>Probability Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-2012</td>
<td>7</td>
<td>0.30</td>
<td>3 events in 10 years</td>
<td>Category 5 - HIGH</td>
</tr>
</tbody>
</table>

The probabilities were calculated on the basis of a distribution *Gen. Pareto*, fitted to the string of observations with the number of stations for which the condition as the rainfall to be less than 350 mm/year has been met, over 1961-2015 period.

<table>
<thead>
<tr>
<th>Risk classes</th>
<th>Risk drought level</th>
<th>Rainfall amounts / year and significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Very low</td>
<td>>800 mm</td>
</tr>
<tr>
<td>2</td>
<td>Low</td>
<td>601-800 mm</td>
</tr>
<tr>
<td>3</td>
<td>Medium</td>
<td>451-600 mm</td>
</tr>
<tr>
<td>4</td>
<td>High</td>
<td>351-450 mm</td>
</tr>
<tr>
<td>5</td>
<td>Very high</td>
<td><350 mm</td>
</tr>
</tbody>
</table>

Scenario 1: 2011-2012 year, with a return period of 3 events in 10 years.
HISTORICAL CONDITIONS OF THE YEARS 2011-2012

SCENARIO 2011-2012

Annual rainfall / 2011-2012

Intensity of scorching heat /summer 2012

Soil moisture, 31 August 2012

fAPAR, 21-28 August 2012
Loss of production from grain / 2011-2012 were over 50% losses (%)

- Winter wheat
- Sunflower
- Rape
- Maize
The density of agricultural land at the level of LAU

Scenario 2011-2012 / Category 5 / HIGH

Scenario 2006-2007 / Category 4 / MEDIUM-HIGH

Scenario CDD / Category 3 / MEDIUM

The density of arable land at the level of LAU
PHYSICAL IMPACT / Scenario 2011-2012, with a return period of 3 events in 10 years

Scenario 2011-2012 / Category 5 - HIGH

The affected area – arable, agriculture and forests (ha)

The length of water supply network (km)

The people without access to basic services (no. inhabitants)
EXPOSURE TO DROUGHT HAZARD: Scenario 2011-2012
Population <4 and >60 years (% of the total population)

Scenario 2011-2012 / Category 5 - HIGH
Index of socio-economic vulnerability to drought
- Sensibility (SENSIB)
- Coping capacity (CAPACIT)
- Adaptative capacity (ADAPT)
The aridity trend in Romania / 2071-2100, 100 years return period

PDSI Index / 2071-2100
100 years return period

<table>
<thead>
<tr>
<th>Classes</th>
<th>Risk drought</th>
<th>Drought significance</th>
<th>PDSI Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Very low</td>
<td>Poor drought</td>
<td>-0.50 - -0.99</td>
</tr>
<tr>
<td>2</td>
<td>Low</td>
<td>Early stage drought</td>
<td>-1.00 - -1.99</td>
</tr>
<tr>
<td>3</td>
<td>Medium</td>
<td>Moderate drought</td>
<td>-2.00 - -2.99</td>
</tr>
<tr>
<td>4</td>
<td>High</td>
<td>Severe drought</td>
<td>-3.00 - -3.99</td>
</tr>
<tr>
<td>5</td>
<td>Very high</td>
<td>Extreme drought</td>
<td>≤-4.0</td>
</tr>
</tbody>
</table>

DROUGHT HAZARD BASED OF THE PDSI INDEX ANALYSIS / 2071-2100, 100 YEARS RETURN PERIOD
Scenario 1: Oltenia / SPEI index, with a return period of 1 event in 10 and 100 years

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Probability Scale</th>
<th>Probability of occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEI, 10 years return</td>
<td>4 Medium-High</td>
<td>1 event in 10 years return period</td>
</tr>
<tr>
<td>SPEI, 100 years return</td>
<td>3 Medium</td>
<td>1 events in 100 years return period</td>
</tr>
</tbody>
</table>

THE AFFECTED AREA – arable, agriculture and forests (ha)
IRIDA - Work flow and approach

ON-THE GROUND
- Soil moisture (3D ERT)
- Plant determinations (sap flow)
- Plot determinations (Eddy Covariance)

OFF-THE GROUND
- UAV: thermal imagery
- Satellite: NDVI and Energy balance

MODELLING
- AQUACROP, SWAP and DSSAT

CLOUD-BASED DSS
- **IRRI-IRIDA** (Farm scale)
 - Spain, Italy and Romania
- **WB-IRIDA** (Catchment scale)
 - Norway

INPUTS
- Input data
- Interoperability

DSS run
- Big data analysis
- Imagery analysis

OUTPUTS
- Precise on-farm ET determinations
- Advice on irrigation
- Weather forecasts
- Crop yield
- ET and catchment water balance
- Run-off, soil erosion, flooding, nutrient loss and droughts

SUPPORT DECISION MAKING

RESULTS

Interpretation decision making
IRIDA Project
D 1.3. Remote sensing data used to estimate evapotranspiration

- In agriculture, an accurate quantification of ET is important for effective and efficient irrigation management.
- In order to monitor the vegetation statement, the medium and high resolution satellite images can be used to obtain the dedicated vegetation indexes and daily evapotranspiration. These indexes are good indicators of drought and they are used also by the scientific community (European Drought Observatory).
- The LANDSAT 5 TM data: 7 spectral bands, with 30 m spatial resolution (thermal band (6) has 120 m spatial resolution).
- Landsat 7 ETM+ data: the main features are: a panchromatic band with 15 m spatial resolution (band 8); visible bands in the spectrum of blue, green, red, near-infrared (NIR), and mid-infrared (MIR) with 30 m spatial resolution (bands 1-5, 7); a thermal infrared channel with 60 m spatial resolution (band 6).
- Landsat 8 OLI data: the main features are: a panchromatic band with 15 m spatial resolution (band 8); visible bands in the spectrum of blue, green, red, near-infrared (NIR), and mid-infrared (MIR) with 30 m spatial resolution (bands 1-9); two thermal infrared channels with 100 m spatial resolution (bands 10 and 11).
D1.3. Remote sensing data used to estimate evapotranspiration

ROMANIAN DEMO AREA
- Calarasi County / Chiselet farm
- Total area: 6,000 ha
- Cereal crops: winter wheat, barley, rape, maize, sun-flower
- Irrigated area: 300 ha

NDVI is an indicator of presence, density and health of vegetation compared to a pixel; the positive values are colored in shades of green to dark green and negative values are colored in shades from yellow to brown, indicating a lack of vegetation or bad health. Blue color indicates water bodies.
Land surface temperature (LST) is one of the key parameters in the physics of land surface processes from local through global scales. The high values are colored in shades of red to orange green and low values are colored in shades from blue to yellow. Comparing with CLC 2012, the high temperature values are recorded over the arable lands.
D 1.3. Remote sensing data used to estimate evapotranspiration

Daily actual evapotranspiration estimated using SEBAL model
Demo Area / Chiselet farm
WP2: Plant and soil water status determinations

D2.2. Procedures for determining representative location within a field when measuring soil and plant water status

- Agrometeorological data: Soil moisture measurements and phenological crops data (data since 1971-now)
- Cereal crops: winter wheat, barley, rape, maize, sun-flower

WP3: Big-data analysis and DSS development

D3.1. Report on routines and algorithm for big-data analysis and images processing
NMA – a Report of the Demo area conditions including historical climatic data analysis and satellite-derived products / end of 2016

D3.2. IRIDA DSS available in cloud server with demo facilities available
NMA - Demo Area / meteorological warnings and forecasts for short (24 h and 3 days) and medium term (5-10 days) and seasonal (1-3 months) based of the ECMFW data and NWP run by NMA (COSMO and ALARO)

D3.3. Smartphone Apps for Android and iOS
NMA- design a specialized module based of the meteo forecasts/warnings
CONCLUSIONS (1)

- A high variability of the mean water supply regime for the both crops in the different phenological phases with regional differentiations.
- The south, south-eastern and eastern regions are the most affected by extreme and strong pedological drought in Romania, especially during the summer time for maize crop.
- The mean regime with extreme and strong drought for maize is wide, encompassing the whole of the country’s south-east in July, expanding in August over the south of the country also and sparsely in the west.
- As regards the general trend, there are differences between the two crops and between the different phenological phases.
- For winter wheat:
 a) a significant upward trend over the almost entire country (September) and restricted areas for May and June (central, north and southwest parts)
 b) a significant upward shift around 1994 towards satisfactory or even optimum water supply conditions around 1994 for September.
- Hydric stress due to pedological drought was consistently increasing in the past 30 years, both in duration and intensity, inducing negative effects on crop development and production in Romania.
D3.2. A Decision Support System in agriculture

Drought forecasts and warnings

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CALARASI</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drought Risk level</th>
<th>Scenario / Estimation (ECWMF) / updated weekly for the next 2 weeks or 1 month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Extreme</td>
<td></td>
</tr>
</tbody>
</table>
WP4: Validation and agronomical and environmental impact assessment

D4.1 Agronomic validation of the IRIDA protocol for scheduling precise full and deficit irrigation based on plant and soil water status information.
D4.2 Agronomic validation of the IRIDA protocol for scheduling precise full irrigation based on crop modelling and weather forecasts.
D4.3 Environmental assessment of the IRIDA protocols based on water balance predictions for mitigating impacts of extreme weather in mixed agro-forestry systems.

NMA / D. 4.2. **Climatic scenarios:**
- observed shifts (historical climatic data / 1961-now) of the air temperature, rainfall and extreme phenomena (e.g. heat waves, heavy rainfall)
- CC scenarios: CMIP5 and EURO-CORDEX numerical experiments (RCP 2.6, RCP 4.5, RCP 8.5)
 - 2021-2050 vs. 1970-2000
- End Users’ interface and application to exploit solution intelligence: i.e. **Digital weather risk atlas** as web based tool providing visualizations of historical climatic data and indicators for the demo area
IRIDA – Economic and Environmental Impacts

<table>
<thead>
<tr>
<th>Country</th>
<th>Agro-ecosystem</th>
<th>Current and expected water applications after applying the IRIDA protocols.</th>
<th>Economic impacts due to water savings, and environmental impacts.</th>
</tr>
</thead>
</table>
| Romania | • Cereals crops (winter wheat, barley, rape and maize).
• Irrigated area is 2.900 ha | • Current: 3.650 to 5.500 (m³/ha)
• Expected after IRIDA: 3.250 to (4.950 m³/ha) | • -216 to 270 €/ha (considering water prices of 0.36 €/m³).
• -12% fertilizers use |

WP5: Dissemination and market exploitation

- **D5.1** Project web page fully operative and functional
- **D5.2** Report on potential targeted market for IRIDA DSS exploitation and commercialization plan including pricing strategies
- **D5.3** Report on the open-day carry out at the 4 demo sites in Spain, Italy, Romania and Norway with a list of first potential customers
- **D5.4** After project life plan including identification of R&D project calls of interest

NMA – Scientific conferences and SCI Journals
- National and international level
- A business model among practitioners/farmers in the Demo area and other areas vulnerable to CC in Romania to extent the project results
RISK CLIMATIC INDEX (CRI) / 1995-2014

The most affected 15 countries in Europa / 1995-2014

German Federal Ministry for Economic Cooperation and Development - BMZ)
Drought events, heat waves, floods, ... / decreasing in the agricultural production at global level -20 ... -50% in 2050 vs. 2015

CC impacts on agricultural production in 2050 vs. 2015
Free access of meteorological forecasts and agrometeorological information

- **Warnings at national level and now-casting forecasts at local level**

- **Seasonal forecasts (1-3 months)**
- **Regional forecasts (2 weeks)**
- **Notes on the drought evolution**

Agrometeorological forecasts

Soil moisture maps
Thank you for your attention!

elena.mateescu@meteororomania.ro